Copied to
clipboard

G = C323D20order 360 = 23·32·5

2nd semidirect product of C32 and D20 acting via D20/C10=C22

metabelian, supersoluble, monomial

Aliases: D304S3, C323D20, C30.20D6, C10.11S32, (C3×C15)⋊14D4, (C6×D15)⋊8C2, C3⋊Dic33D5, C6.26(S3×D5), C51(D6⋊S3), C156(C3⋊D4), C33(C3⋊D20), (C3×C6).11D10, C2.4(D15⋊S3), (C3×C30).25C22, (C5×C3⋊Dic3)⋊5C2, SmallGroup(360,87)

Series: Derived Chief Lower central Upper central

C1C3×C30 — C323D20
C1C5C15C3×C15C3×C30C6×D15 — C323D20
C3×C15C3×C30 — C323D20
C1C2

Generators and relations for C323D20
 G = < a,b,c,d | a3=b3=c20=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 452 in 70 conjugacy classes, 23 normal (11 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, Dic3, D6, C2×C6, C15, C15, C3×S3, C3×C6, C20, D10, C3⋊D4, C3×D5, D15, C30, C30, C3⋊Dic3, S3×C6, D20, C3×C15, C5×Dic3, C6×D5, D30, D6⋊S3, C3×D15, C3×C30, C3⋊D20, C5×C3⋊Dic3, C6×D15, C323D20
Quotients: C1, C2, C22, S3, D4, D5, D6, D10, C3⋊D4, S32, D20, S3×D5, D6⋊S3, C3⋊D20, D15⋊S3, C323D20

Smallest permutation representation of C323D20
On 120 points
Generators in S120
(1 90 43)(2 44 91)(3 92 45)(4 46 93)(5 94 47)(6 48 95)(7 96 49)(8 50 97)(9 98 51)(10 52 99)(11 100 53)(12 54 81)(13 82 55)(14 56 83)(15 84 57)(16 58 85)(17 86 59)(18 60 87)(19 88 41)(20 42 89)(21 101 63)(22 64 102)(23 103 65)(24 66 104)(25 105 67)(26 68 106)(27 107 69)(28 70 108)(29 109 71)(30 72 110)(31 111 73)(32 74 112)(33 113 75)(34 76 114)(35 115 77)(36 78 116)(37 117 79)(38 80 118)(39 119 61)(40 62 120)
(1 43 90)(2 91 44)(3 45 92)(4 93 46)(5 47 94)(6 95 48)(7 49 96)(8 97 50)(9 51 98)(10 99 52)(11 53 100)(12 81 54)(13 55 82)(14 83 56)(15 57 84)(16 85 58)(17 59 86)(18 87 60)(19 41 88)(20 89 42)(21 101 63)(22 64 102)(23 103 65)(24 66 104)(25 105 67)(26 68 106)(27 107 69)(28 70 108)(29 109 71)(30 72 110)(31 111 73)(32 74 112)(33 113 75)(34 76 114)(35 115 77)(36 78 116)(37 117 79)(38 80 118)(39 119 61)(40 62 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(41 102)(42 101)(43 120)(44 119)(45 118)(46 117)(47 116)(48 115)(49 114)(50 113)(51 112)(52 111)(53 110)(54 109)(55 108)(56 107)(57 106)(58 105)(59 104)(60 103)(61 91)(62 90)(63 89)(64 88)(65 87)(66 86)(67 85)(68 84)(69 83)(70 82)(71 81)(72 100)(73 99)(74 98)(75 97)(76 96)(77 95)(78 94)(79 93)(80 92)

G:=sub<Sym(120)| (1,90,43)(2,44,91)(3,92,45)(4,46,93)(5,94,47)(6,48,95)(7,96,49)(8,50,97)(9,98,51)(10,52,99)(11,100,53)(12,54,81)(13,82,55)(14,56,83)(15,84,57)(16,58,85)(17,86,59)(18,60,87)(19,88,41)(20,42,89)(21,101,63)(22,64,102)(23,103,65)(24,66,104)(25,105,67)(26,68,106)(27,107,69)(28,70,108)(29,109,71)(30,72,110)(31,111,73)(32,74,112)(33,113,75)(34,76,114)(35,115,77)(36,78,116)(37,117,79)(38,80,118)(39,119,61)(40,62,120), (1,43,90)(2,91,44)(3,45,92)(4,93,46)(5,47,94)(6,95,48)(7,49,96)(8,97,50)(9,51,98)(10,99,52)(11,53,100)(12,81,54)(13,55,82)(14,83,56)(15,57,84)(16,85,58)(17,59,86)(18,87,60)(19,41,88)(20,89,42)(21,101,63)(22,64,102)(23,103,65)(24,66,104)(25,105,67)(26,68,106)(27,107,69)(28,70,108)(29,109,71)(30,72,110)(31,111,73)(32,74,112)(33,113,75)(34,76,114)(35,115,77)(36,78,116)(37,117,79)(38,80,118)(39,119,61)(40,62,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,102)(42,101)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,112)(52,111)(53,110)(54,109)(55,108)(56,107)(57,106)(58,105)(59,104)(60,103)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,100)(73,99)(74,98)(75,97)(76,96)(77,95)(78,94)(79,93)(80,92)>;

G:=Group( (1,90,43)(2,44,91)(3,92,45)(4,46,93)(5,94,47)(6,48,95)(7,96,49)(8,50,97)(9,98,51)(10,52,99)(11,100,53)(12,54,81)(13,82,55)(14,56,83)(15,84,57)(16,58,85)(17,86,59)(18,60,87)(19,88,41)(20,42,89)(21,101,63)(22,64,102)(23,103,65)(24,66,104)(25,105,67)(26,68,106)(27,107,69)(28,70,108)(29,109,71)(30,72,110)(31,111,73)(32,74,112)(33,113,75)(34,76,114)(35,115,77)(36,78,116)(37,117,79)(38,80,118)(39,119,61)(40,62,120), (1,43,90)(2,91,44)(3,45,92)(4,93,46)(5,47,94)(6,95,48)(7,49,96)(8,97,50)(9,51,98)(10,99,52)(11,53,100)(12,81,54)(13,55,82)(14,83,56)(15,57,84)(16,85,58)(17,59,86)(18,87,60)(19,41,88)(20,89,42)(21,101,63)(22,64,102)(23,103,65)(24,66,104)(25,105,67)(26,68,106)(27,107,69)(28,70,108)(29,109,71)(30,72,110)(31,111,73)(32,74,112)(33,113,75)(34,76,114)(35,115,77)(36,78,116)(37,117,79)(38,80,118)(39,119,61)(40,62,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,102)(42,101)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,112)(52,111)(53,110)(54,109)(55,108)(56,107)(57,106)(58,105)(59,104)(60,103)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,100)(73,99)(74,98)(75,97)(76,96)(77,95)(78,94)(79,93)(80,92) );

G=PermutationGroup([[(1,90,43),(2,44,91),(3,92,45),(4,46,93),(5,94,47),(6,48,95),(7,96,49),(8,50,97),(9,98,51),(10,52,99),(11,100,53),(12,54,81),(13,82,55),(14,56,83),(15,84,57),(16,58,85),(17,86,59),(18,60,87),(19,88,41),(20,42,89),(21,101,63),(22,64,102),(23,103,65),(24,66,104),(25,105,67),(26,68,106),(27,107,69),(28,70,108),(29,109,71),(30,72,110),(31,111,73),(32,74,112),(33,113,75),(34,76,114),(35,115,77),(36,78,116),(37,117,79),(38,80,118),(39,119,61),(40,62,120)], [(1,43,90),(2,91,44),(3,45,92),(4,93,46),(5,47,94),(6,95,48),(7,49,96),(8,97,50),(9,51,98),(10,99,52),(11,53,100),(12,81,54),(13,55,82),(14,83,56),(15,57,84),(16,85,58),(17,59,86),(18,87,60),(19,41,88),(20,89,42),(21,101,63),(22,64,102),(23,103,65),(24,66,104),(25,105,67),(26,68,106),(27,107,69),(28,70,108),(29,109,71),(30,72,110),(31,111,73),(32,74,112),(33,113,75),(34,76,114),(35,115,77),(36,78,116),(37,117,79),(38,80,118),(39,119,61),(40,62,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(41,102),(42,101),(43,120),(44,119),(45,118),(46,117),(47,116),(48,115),(49,114),(50,113),(51,112),(52,111),(53,110),(54,109),(55,108),(56,107),(57,106),(58,105),(59,104),(60,103),(61,91),(62,90),(63,89),(64,88),(65,87),(66,86),(67,85),(68,84),(69,83),(70,82),(71,81),(72,100),(73,99),(74,98),(75,97),(76,96),(77,95),(78,94),(79,93),(80,92)]])

39 conjugacy classes

class 1 2A2B2C3A3B3C 4 5A5B6A6B6C6D6E6F6G10A10B15A···15H20A20B20C20D30A···30H
order12223334556666666101015···152020202030···30
size113030224182222430303030224···4181818184···4

39 irreducible representations

dim1112222222444444
type+++++++++++-+
imageC1C2C2S3D4D5D6D10C3⋊D4D20S32S3×D5D6⋊S3C3⋊D20D15⋊S3C323D20
kernelC323D20C5×C3⋊Dic3C6×D15D30C3×C15C3⋊Dic3C30C3×C6C15C32C10C6C5C3C2C1
# reps1122122244141444

Matrix representation of C323D20 in GL6(𝔽61)

100000
010000
001000
000100
00006060
000010
,
100000
010000
0006000
0016000
000010
000001
,
27360000
2540000
0006000
0060000
000010
00006060
,
52450000
590000
000100
001000
000010
000001

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,25,0,0,0,0,36,4,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,0,0,0,1,60,0,0,0,0,0,60],[52,5,0,0,0,0,45,9,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C323D20 in GAP, Magma, Sage, TeX

C_3^2\rtimes_3D_{20}
% in TeX

G:=Group("C3^2:3D20");
// GroupNames label

G:=SmallGroup(360,87);
// by ID

G=gap.SmallGroup(360,87);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,73,31,387,201,730,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^20=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽